Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Phys Chem Lett ; 14(13): 3230-3235, 2023 Apr 06.
Article in English | MEDLINE | ID: covidwho-2280490

ABSTRACT

The spread of the monkeypox virus has surged during the unchecked COVID-19 epidemic. The most crucial target is the viral envelope protein, p37. However, lacking p37's crystal structure is a significant hurdle to rapid therapeutic discovery and mechanism elucidation. Structural modeling and molecular dynamics (MD) of the enzyme with inhibitors reveal a cryptic pocket occluded in the unbound structure. For the first time, the inhibitor's dynamic flip from the active to the cryptic site enlightens p37's allosteric site, which squeezes the active site, impairing its function. A large force is needed for inhibitor dissociation from the allosteric site, ushering in its biological importance. In addition, hot spot residues identified at both locations and discovered drugs more potent than tecovirimat may enable even more robust inhibitor designs against p37 and accelerate the development of monkeypox therapies.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Humans , Allosteric Site , Catalytic Domain , Monkeypox virus , Protein Binding , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL